

Florida Solar Energy Center • November 1-4, 2005

Lightweight Composite Tanks for Liquid Hydrogen Storage

Bhavani Sankar
Peter Ifju
Department of Mechanical & Aerospace Engineering
University of Florida, Gainesville

Start Date = June 2002 Planned Completion = August 2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- Goal
 - To develop a lightweight composite material system for liquid hydrogen storage tanks
- Objectives
 - Develop and verify models to predict micro-cracking in fiber composite laminates
 - Micromechanics models for thermal stresses in the fiber and matrix phases
 - New experimental technique to measure CTE and thermal stresses
 - Develop and verify models for fracture and delamination at cryogenic conditions
 - Develop and verify models to predict gas permeability
 - Micro-mechanics based models for micro-crack density
 - Experiments to measure gas permeability
 - Models to predict gas permeability
 - Design methodology for LH2 tank based on the above results

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

Currently composite tanks are not being used for LH2 storage because
of micro-cracking and gas permeability issues. Although an
impermeable liner can be added to the composite tank, debonding of
the liner and subsequent leakage remains a problem. Hence a linerless lightweight tank is still an urgent need for many weight critical
applications.

Relevance to NASA

 NASA is aiming at reducing the cost of future launches by an order of magnitude and at the same time making future missions involving humans much safer. Fiber composites such as graphite/epoxy have high specific stiffness and specific strength and are finding applications in many aerospace structures. If the problem of micro-cracking and permeation can be solved, then these materials can also be used for LH2 storage systems.

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

Approximate Budget

- 2002-03: \$159K

- 2003-04: \$80K

- 2004-05: \$80K

- 2005-06: \$86K

Schedule

- 2002-03: Micromechanics and CTE measurements
- 2003-04: Fracture mechanics models and experiments
- 2004-05: Models for micro-crack density and permeability measurements
- 2005-06: Modeling and measuring permeability under strain

Deliverables

- Permeability of various composite material systems
- Models to predict thermal stresses, CTE, micro-crack density and permeability

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

- Design of lightweight fiber composite material system for cryogenic storage applications. The material system will have the following attributes:
 - minimum thermal stresses
 - Minimum amount of micro-cracking
 - Low gas permeability
- Design methodology for composite cryogenic storage systems

Florida Solar Energy Center • November 1-4, 2005

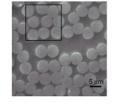
Accomplishments and Results

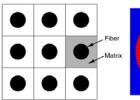
- Demonstrated micro-level thermal stresses are significant and has to be considered in addition to the ply-level thermal stresses in laminated composites at cryogenic temperatures
- Showed that residual stresses due to matrix shrinkage is significant at cryogenic temperatures and could affect safety-factor at cryogenic temperatures.
- Measured the fracture toughness of various material systems and showed that textile composites perform superbly at cryogenic conditions
- Measured the gas permeability of various laminates after cryo cycling and showed that (a) dispersing like plies is better than grouping them;
 (b) textile composites have low permeability even after cryo cycling
- Developed an efficient 3-D model to predict micro-crack density in laminates loaded bi-axially

Florida Solar Energy Center • November 1-4, 2005

Future Plans

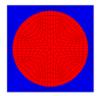
- Extend the micro-crack density prediction models to predict permeability
- Modify the permeability test set-up to measure permeability under strain
- Perform permeability tests on various laminate systems including textile composites and compare their performance under strain after cryo cycling

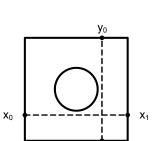




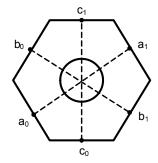
Florida Solar Energy Center • November 1-4, 2005

Micromechanics Models to Predict Thermal Stresses





y, 3, *v*


x, 2, u

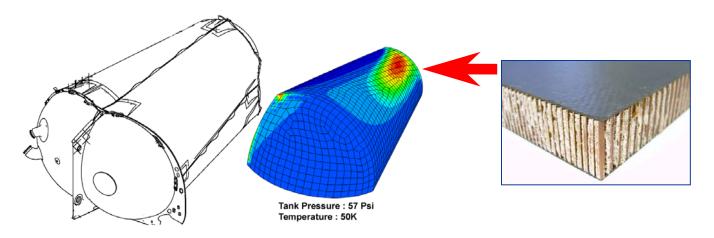
y0

Hexagonal Unit Cell

Periodic boundary condition for the square unit cell model subjected to individual strain cases

$\varepsilon_{\rm x}=1$	$\varepsilon_{\rm y}$ =1	$\varepsilon_{\rm z}$ =1	$\gamma_{xy}=1$	$\gamma_{xz}=1$	$\gamma_{yz}=1$
$u_{x1} - u_{x0} = L$ $v_{y1} - v_{y0} = 0$ $w_{z1} - w_{z0} = 0$	$u_{x1}-u_{x0}=0$ $v_{y1}-v_{y0}=L$ $w_{z1}-w_{z0}=0$	$u_{x1}-u_{x0} = 0 v_{y1}-v_{y0} = 0 w_{z1}-w_{z0} = t$	$v_{x1} - v_{x0} = 0.5L$ $u_{y1} - u_{y0} = 0.5L$ $w_{z1} - w_{z0} = 0$	$w_{x1} - w_{x0} = L u_{z1} - u_{z0} = 0$	$w_{y0} + w_{y1} = L$ $v_{z1} - v_{z0} = 0$

Periodic boundary condition for the hexagonal unit cell model subjected to individual strain cases

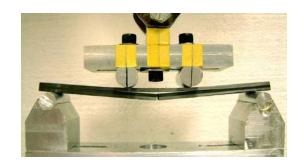


Florida Solar Energy Center • November 1-4, 2005

Multi-Scale Modeling

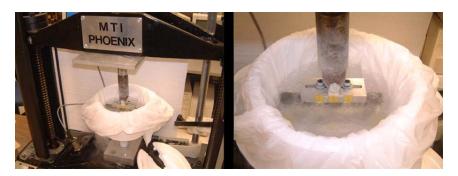
Pressure = 57 PSI, Temperature = 50K. The tank was modeled using finite elements. The macro-level strains were calculated using the FE analysis.

- •Inner facesheet 0.066 in. thick 13 plies [45/90₃/-45/0₃/-45/90₃/45]
- •Core 1.5 in. thick honeycomb Korex 3/16 3.0
- •Outer facesheet 0.034 in. thick 7 plies [65/0/-65/90/-65/0/65]



Florida Solar Energy Center • November 1-4, 2005

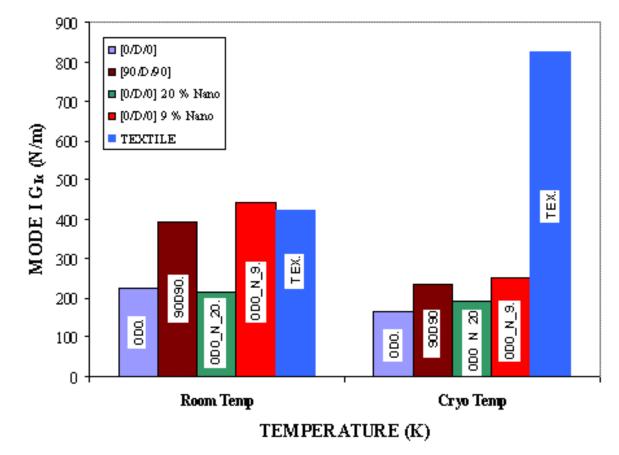
Fracture Test at Room and Cryogenic Temperature


Four-point bending experimental setup

Dimensions of composite specimens [0/90/0]

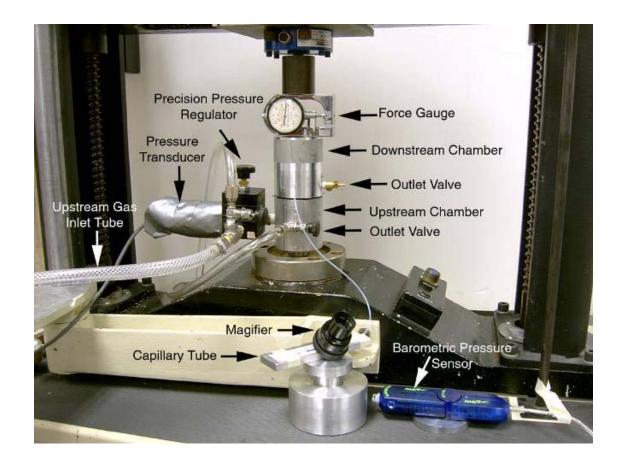
			Layer Thickness	
Specime n	Length (mm)	Width (mm)	Top and bottom layer, 0° (mm)	Mid layer, 90° (mm)
1	145.4	18.6	2.4	1.8
2	146.2	18.7	2.4	2.4
3	145.7	18.8	2.4	3.0

Four-point bending experimental setup at cryogenic temperature



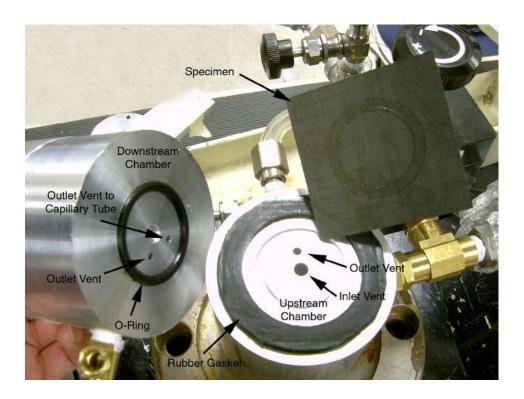
Florida Solar Energy Center • November 1-4, 2005

Delamination fracture toughness of different material systems



Florida Solar Energy Center • November 1-4, 2005

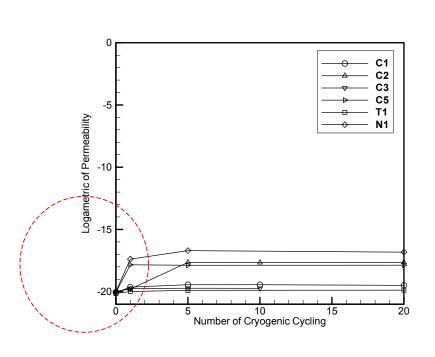
Permeability Test Facility

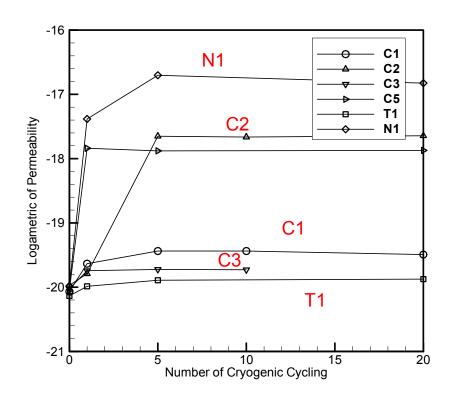


Florida Solar Energy Center • November 1-4, 2005

Gas Transmission Cell

O-ring Inner Diameter = 38 mm





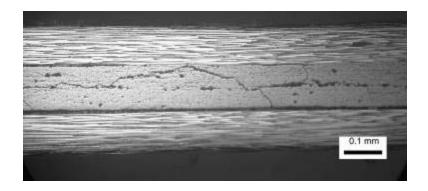
Florida Solar Energy Center • November 1-4, 2005

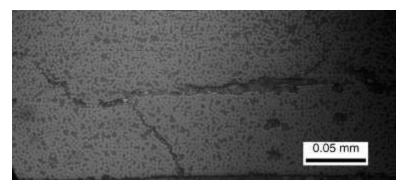
Permeability of Various Composite Materials Systems

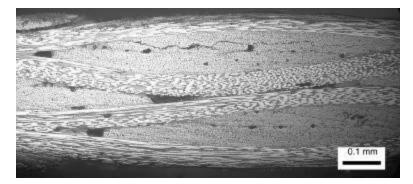
C1,C2,C3 are laminated composite specimens.

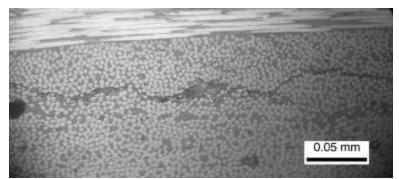
T1 is a textile composite specimen.

N1 is a laminated composite specimen embedded with nano-particles.



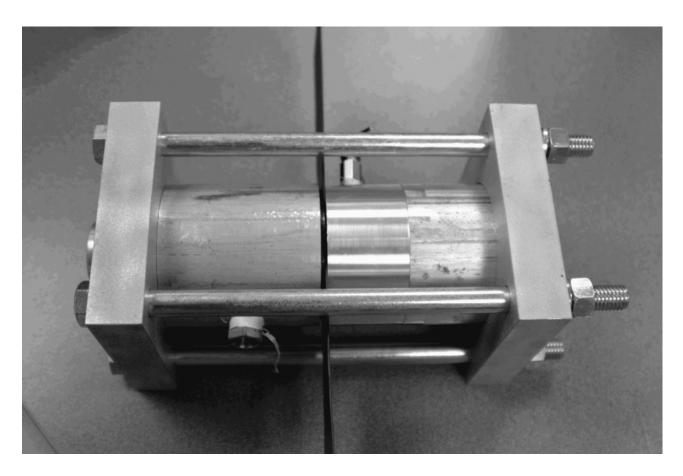



Florida Solar Energy Center • November 1-4, 2005


Optical Microscopic Analysis of Laminated and Textile Composite Specimens (After Cryogenic Cycling)

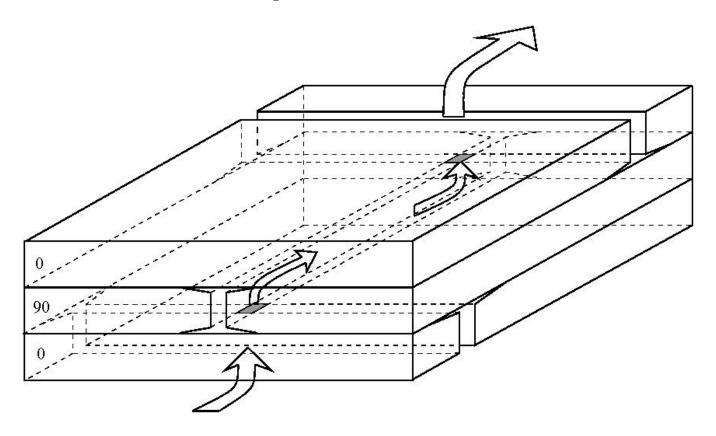
In laminated composites cracks connect through plies

In textile composites cracks are restricted to yarns and plies



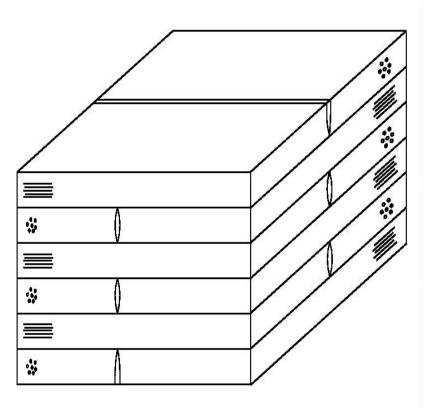
Florida Solar Energy Center • November 1-4, 2005

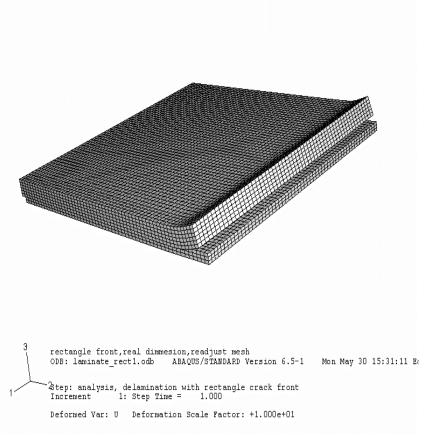
Modified set up to measure permeability under strain



Florida Solar Energy Center • November 1-4, 2005

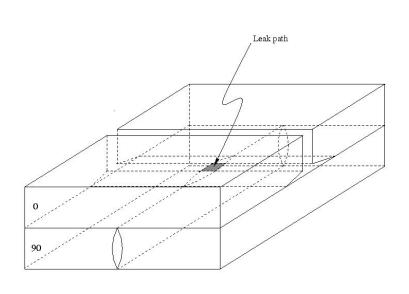
Modeling Permeability in Composite Laminates

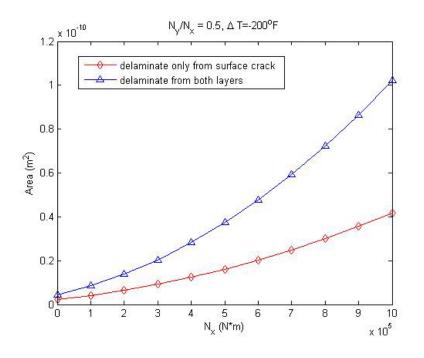




Florida Solar Energy Center • November 1-4, 2005

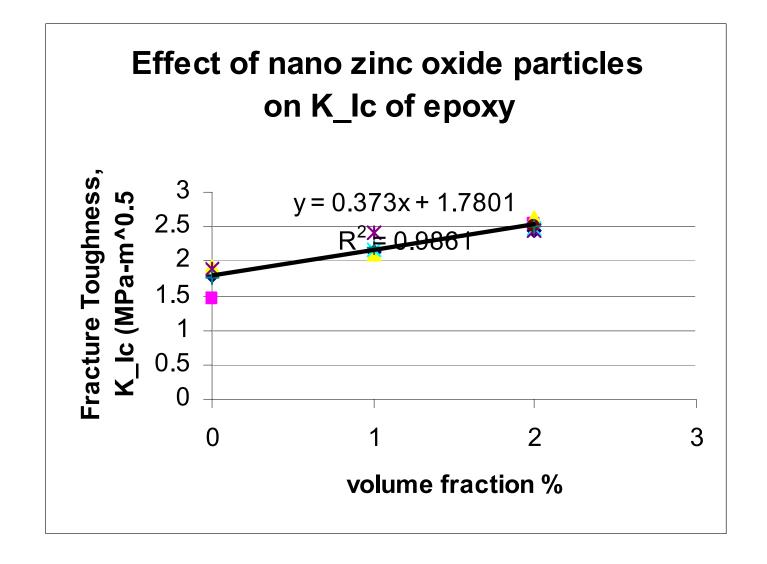
3-D Finite Element Model





Florida Solar Energy Center • November 1-4, 2005

Crack surface area as a function load



Florida Solar Energy Center • November 1-4, 2005

Florida Solar Energy Center • November 1-4, 2005

Students Graduated/Current

- Doctoral Students
 - Sukjoo Choi (May 2005, Post Doctoral Associate at Texas A&M)
 - Jianlong Xu (expected May 2007)
- Master Students (with thesis)
 - Sujith Kalarikkal (August 2004, with Research Applications, Inc., San Diego)
 - Won-Jong Noh (August 2004, with Hyundai Motors)
 - James VanPelt (expected May 2007)

Florida Solar Energy Center • November 1-4, 2005

Archival Publications

- Lim, W.-K., S.-Y. Choi and B.V. Sankar (2001) "Biaxial Load Effects on Crack Extension in Anisotropic Solids", *Engineering Fracture Mechanics*, 68(4):403-416.
- Choi, S., B.V. Sankar. "Fracture toughness of carbon foam", *Journal of Composite Materials*, 37(23):2101-2116, 2003.
- Choi, S. and B.V. Sankar, 2005, "A Micromechanical method to predict the fracture toughness of cellular materials", *International Journal of Solids & Structures* 42 (2005) 1797-1817.
- Choi, S. And B.V. Sankar, "A micromechanics method to predict the micro-cracking of the LH2 composite tank at cryogenic temperature", Proceedings of the 5th International Congress on Thermal Stresses and related Topics, TS 2003, Blacksburg, VA, 8-11 June 2003, pp. WM441-444.
- Choi, S., B.V. Sankar, "Micromechanical Analysis of Composite Laminates at Cryogenic Temperatures", *J. Composite Materials (in press)*
- Choi, S., B.V. Sankar. "Thermal stresses in a composite pressure vessel at cryogenic temperatures", *Developments in Theoretical and Applied Mechanics*, Proceedings of the 22nd Southeastern Conference in Theoretical and Applied Mechanics (SECTAM), August 15-17, 2004, Center for Advanced Materials, Tuskegee University, Tuskegee, Alabama, pp. 587-596.
- Kalarikkal, S., B.V. Sankar, P.G. Ifju, "Effect of Cryogenic Temperature on the Fracture Toughness of Graphite/Epoxy Composites". ASME Journal of Engineering Materials and Technology (in press)
- Grau, DL, XS Qiu, BV Sankar. "Relation between interfacial fracture toughness and modemixity in honeycomb core sandwich composites", *J. Sandwich Structures & Materials* (in press)